- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Jerschow, Alexej (3)
-
Korenchan, David E. (3)
-
Lu, Jiaqi (3)
-
Levitt, Malcolm H. (2)
-
Banzhaf, Wolfgang (1)
-
Bo, Shaowei (1)
-
Bricco, Alexander R. (1)
-
Brown, Lynda J. (1)
-
Dagys, Laurynas (1)
-
Farrar, Christian T. (1)
-
Gilad, Assaf A. (1)
-
Korenchan, David E (1)
-
McMahon, Michael T. (1)
-
Miralavy, Iliya (1)
-
Perlman, Or (1)
-
Sabba, Mohamed (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Korenchan, David E.; Lu, Jiaqi; Sabba, Mohamed; Dagys, Laurynas; Brown, Lynda J.; Levitt, Malcolm H.; Jerschow, Alexej (, Physical Chemistry Chemical Physics)Nuclear spin relaxation mechanisms are often difficult to isolate and identify, especially in molecules with internal flexibility. Here we combine experimental work with computation in order to determine the major mechanisms responsible for 31 P spin–lattice and singlet order (SO) relaxation in pyrophosphate, a physiologically relevant molecule. Using field-shuttling relaxation measurements (from 2 μT to 9.4 T) and rates calculated from molecular dynamics (MD) trajectories, we identified chemical shift anisotropy (CSA) and spin–rotation as the major mechanisms, with minor contributions from intra- and intermolecular coupling. The significant spin–rotation interaction is a consequence of the relatively rapid rotation of the –PO 3 2− entities around the bridging P–O bonds, and is treated by a combination of MD simulations and quantum chemistry calculations. Spin–lattice relaxation was predicted well without adjustable parameters, and for SO relaxation one parameter was extracted from the comparison between experiment and computation (a correlation coefficient between the rotational motion of the groups).more » « less
-
Korenchan, David E.; Lu, Jiaqi; Levitt, Malcolm H.; Jerschow, Alexej (, Physical Chemistry Chemical Physics)31 P NMR spectroscopy and the study of nuclear spin singlet relaxation phenomena are of interest in particular due to the importance of phosphorus-containing compounds in physiology. We report the generation and measurement of relaxation of 31 P singlet order in a chemically equivalent but magnetically inequivalent case. Nuclear magnetic resonance singlet state lifetimes of 31 P pairs have heretofore not been reported. Couplings between 1 H and 31 P nuclei lead to magnetic inequivalence and serve as a mechanism of singlet state population conversion within this molecule. We show that in this molecule singlet relaxation occurs at a rate significantly faster than spin–lattice relaxation, and that anticorrelated chemical shift anisotropy can account for this observation. Calculations of this mechanism, with the help of molecular dynamics simulations and ab initio calculations, provide excellent agreement with the experimental findings. This study could provide guidance for the study of 31 P singlets within other compounds, including biomolecules.more » « less
-
Bricco, Alexander R.; Miralavy, Iliya; Bo, Shaowei; Perlman, Or; Korenchan, David E.; Farrar, Christian T.; McMahon, Michael T.; Banzhaf, Wolfgang; Gilad, Assaf A. (, ACS Synthetic Biology)
An official website of the United States government
